Nowadays, mathematicians tend to over-abstract things that in fact cannot be further abstracted, which not only dilutes the essence of concepts but also drives away potential students and users, and eventually, if this pathological mood is not cured, will make a lot of mathematicians breadless.
举例:向量空间V,W之间的映射f:V-->W。则dim V = dim (ker f) + dim (im f). dim就是空间的维度。这个结果,虽说平淡,却异常重要。
对偶空间:V-->V*, W-->W*
"内积": g(v1,v2) , G(w1,w2)
伴随映射f^: G(w,fv) = g(v,f^w)
有一简单但重要的结论,线性映射与其伴随映射的像空间之维度相等:
dim im f = dim im f^
至此,我们能够给出一个儿童版的指标定理及完整证明:
对向量空间之间的线性映射f: V-->W,V中元素按ker f作为不变子空间分成等价类,im f 必定与商集V/ker f同构。自然得到:dim V = dim (ker f) + dim (im f)。 同样,我们可以引入余核: coker = W/im f,即W空间中依im f作为不变子空间分出的等价类,显然有:dim W = dim (coker f) + dim (im f). 于是,我们立得:
dim (ker f) - dim (coker f) = dim V - dim W。
由于dim (coker f) = dim (ker f^) 故上式亦可写成
dim (ker f) - dim (ker f^) = dim V - dim W。
这个简单事实意味深长:左边每项都是非常依赖于f的具体细节,但右边却只与整体性质,即V和W的维度之差有关,它显然是一个拓扑不变量,因而它告诉我们:尽管左边每项都是非常依赖于f的具体定义,但其差dim (ker f) - dim (coker f)却与f没有关系!这一简单结果可以理解为玩具级的指标定理:算子f的解析指标(左边)等于其作用流形的拓扑指标(右边)。
我们考虑紧致流形,紧致大体就是有限的意思。泛函分析可以给出简单的定理:紧致流形上的椭圆算子之ker和coker都是有限维的,即所谓Fredholm的。前面讲过,对于算子或映射D: V --> W,coker = W / im D。dim coker不等于零就说明存在D不能映到的地方,也就是说在W上存在额外的限制条件或约束条件。所以,对紧流形,椭圆算子自动暗含它就是Fredholm算子。一般解析指标:ind_ana = dim ker D – dim coker D.
很多学生学完拓扑学还是不知道算简单形状的同伦群,就是因为教材上的那种写法是以最错乱的方式写的。休息亭:基本群。它就是一阶同伦群。也就是以一维围道为同伦类构成的群。基本群之所以重要,除它能描述二维洞以外,它与Poincare猜想之关连可能是最重要的原因。Poincare猜想是說,与球面S^{n}同伦的 n 维拓扑流形一定同胚于 S^{n} 。对三维流形(Poincare猜想原始版的流形),可以表成:如果一个三维流形的基本群与三维球面的一样,则这个三维流形就是一个三维球面(拓扑等价或同胚)。很奇怪这个如此"地道的拓扑学"猜想最后竟然不是用拓扑学方法证明的。
巧的是,如此定义微分,积分会得到巨大简化,高维积分与一维积分一样简便。更巧的是这样定义的微分形式按乘法构成群,叫 (de Rham)上同调群。外微分形式还有很多巧,暂先不谈。
我们知道,把张量分量当作一个矩阵(高维)的元素以后,张量就是矩阵。因此曲率张量就是曲率矩阵。微分形式的曲率张量就是微分形式构成的矩阵。用矩阵时,我们希望矩阵行为端正,例如不要奇异,即有反矩阵存在。否则我们就不理睬它。我们对待曲率矩阵也是如此,都假定它是a good guy。这样我们就可以找他的特征值(即曲率张量的主分量)。我想,如何求矩阵特征值就不用提了吧,归根到底就是解行列式而已:
等式左边(映射或函数)是分析(量),而右边(空间维度)是拓扑(量)。因此说这
个等式"建立起了分析学和拓扑学的联系"。这就是指标定里的核心意义,它揭示出两个
看似没有关连的领域其实是有制约关系的。你看到楼下已经有几个人奈不住把这句话a
linkage, or, bridge, between two apparently unconnected fields, i.e.,
analysis and topology, is established by AS theorem讲了几次了。